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Abstract

Error diagnosis of fine-grid photochemical transport models (CTM) has become a formidable task, which requires

thorough understanding of complex microphysical and photochemical processes in the atmosphere as well as scientific

computing. In an initial modeling exercise conducted for the California Regional PM10/PM2.5 Air Quality Study

(CRPAQS), abnormally high, unrealistic, PM sulfate concentrations were simulated in central California. To aid the error

diagnosis, two matrix factorization methods, namely absolute principal component analysis (APCA) and an efficient non-

negative matrix factorization method (NMFROC), were used to analyze the relationships among the input and output

parameters of a CTM for PM modeling and to apportion the relative importance of individual factors to an abnormal

sample. The APCA method corroborated sciences implemented in the PM model, but failed to apportion the relative

importance of individual factors to PM sulfate in an abnormal case. On the other hand, the NMFROC method performed

well on the apportionment of an abnormally high PM sulfate. The factors produced from the NMFROC method shared

common features with the APCA method, but significant differences remain between the two methods, which can be

understood from their difference in methodology. Subsequent PM modeling results were shown to validate the results from

the NMFROC method.

Published by Elsevier Ltd.
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1. Introduction

Grid-based photochemical transport models,
such as CMAQ (USEPA, 1999; CMAS, 2005) and
CAMx (Environ, 2005), require inputs of three-
dimensional meteorological parameters and emis-
sion rates of gas and particle species, to generate
outputs for concentrations of chemical species and
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particle parameters. Owing to the large volume of
input and output data, the error diagnosis of PM
models has become a formidable task. Implementa-
tion of process analysis in PM models was shown to
provide helpful information on certain processes
(Tonnesen and Dennis, 2000), and sensitivity
analysis tools may be also helpful (Morris et al.,
2003; Zhang et al., 2005b). However, these techni-
ques have to be run on-line, which further slows
down 3D PM models that are already computa-
tionally demanding (Zhang et al., 2005a). A
complementary off-line diagnostic tool is desirable

www.elsevier.com/locate/atmosenv
dx.doi.org/10.1016/j.atmosenv.2006.05.035
mailto:jliang@arb.ca.gov


ARTICLE IN PRESS
J. Liang et al. / Atmospheric Environment 40 (2006) 5759–57675760
especially if the computer resource is an issue as for
the 2000–2001 wintertime PM modeling in the
California Regional PM10/PM2.5 Air Quality Study
(Liang et al., 2006a; Magliano and McDade, 2005;
Zhang et al., 2005a).

Receptor-oriented models have been previously
applied to addressing source identification and
apportionment issues of water and air pollution
(Winchester and Nifong, 1971; Henry et al., 1984;
Hopke, 1985; Watson et al., 1990, 2001; Chow and
Watson, 2002; Lewis et al., 2003). For receptor
models, the application problems have to be linear,
and no significant change is allowed for source
profiles between the emission and receptor points.
Inert or slow-reacting primary pollutants, such as
elements and CO, are about linear in terms of
source apportionment between sources and recep-
tors. Photochemical products, such as ozone and
secondary PM, are non-linear in terms of source
apportionment, since their responses at receptors to
precursor reductions at sources are often not
proportional. Meteorological parameters are also
non-linear in nature, since they are non-additive and
source apportionment is irrelevant for them. In
sum, for non-linear species and parameters, the
source apportionment function of receptor models
is meaningless. Matrix factorization (MF) methods
used in receptor-oriented models, however, could be
used to analyze the relationship between model
inputs and outputs, to be elaborated below, since
the mathematical algorithms of MF methods, such
as principal component analysis (PCA) (Thurston
and Spengler, 1985; Jolliffe, 2002) and non-negative
MF (NMF) methods (Paatero, 1997; Lee and
Seung, 1999, 2001; Liang and Fairley, 2006), were
designed for broader applications. Using NMF as
an example, its mathematical goal is to extract a
number of extreme rays (or called parts, compo-
nents, vectors, etc.) in the positive orthant from
sample matrix to account for major features of the
sample matrix. The NMF method carries no
assumption to or inference from the information
before the data were acquired. Thus, it leaves the
interpretation of results to users in specific fields
according to the properties of the sample matrix and
the nature of the NMF method.

To simulate an extended 2000–2001 winter PM
episode captured in the Central Valley during the
California Regional PM10/PM2.5 Air Quality Study
(CRPAQS), we conducted a series of simulations
using CMAQ with MM5 meteorological inputs.
Details about the CMAQ simulations for the above
CRPAQS episode (Liang et al., 2006a,b; Zhang et
al., 2005a) are not the focus of this paper. In earlier
simulations, abnormally high, unrealistic concentra-
tions of PM sulfate were produced in the model. We
applied two MF methods to aid in error diagnosis,
as well as corroborate model performance. An
efficient non-negative matrix factorization method
(NMFROC) (Liang and Fairley, 2006) and the
absolute PCA method (Thurston and Spengler,
1985; Cao et al., 2005) were coded in a statistical
language (R Development Core Team, 2005). First,
we will briefly introduce the two MF methods in
Section 2. Then, we will describe the PM modeling
problem and parameters in Section 3. After that,
we will present the results from MF methods in
Section 4. Finally, we will conclude with a
summary.
2. The two matrix factorization methods

In this section, we will briefly describe the two
MF methods used in this paper. For more detailed
formulation, readers are referred to Thurston and
Spengler (1985) for absolute PCA (APCA) and
Liang and Fairley (2006) for NMFROC.
2.1. The APCA method

PCA has been widely used in many fields (Jolliffe,
2002). PCA makes use of eigenvectors of the
correlation matrix of input data matrix A with v

variables and s samples, to split normalized input
matrix Å (2.1) into two matrices, namely, an
eigenvector matrix D½v; v� that is also termed PC
coefficients, and a PC score matrix (DtÅ). It is
common practice to discard those eigenvectors with
eigenvalues less than 1, so that only p (ov) factors
are retained. The APCA method rotates the D½v; p�
matrix with a scheme called varimax to reach a final
coefficient matrix D�, and calibrates the correspond-
ing PC score matrix (S ¼ D*tÅ) to reach the
absolute PC score matrix X, as shown in Eq. (2.2).
For factor identification purposes, the correlation
between variables and PCs in the samples was
calculated to form a PC loading matrix. X can be
used in subsequent regression against variables of
interest related to samples.

Å½iv; is� ¼
A½iv; is� � Ā½iv�

s½iv�
,

is ¼ 1 : s; iv ¼ 1 : v, ð2:1Þ
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X ½ip; is� ¼ S½ip; is� þ
Xv

iv¼1

D�½iv; ip�
Ā½iv�

s½iv�
,

is ¼ 1 : s; ip ¼ 1 : p. ð2:2Þ

2.2. The NMFROC method

The NMFROC method is relatively new, and the
detailed formulation was presented in Liang and
Fairley (2006). The NMFROC method consists of
two major steps, namely the initialization step
(ROC) and the updating step (NMF). For an input
matrix A with v variables and s samples, the ROC
method obtains initial solution matrices (B½v; p� and
C½p; s�) from A½v; s�, where povos, with non-
negative constraints. The updating step proceeds
until the solution converges to either absolute error
tolerance (PEp11) or relative error tolerance
(PEn=PEn�1p10�7), where PE was defined by Liang
and Fairley (2006). After convergence, columns of B

are scaled so that the sum of column elements
equals v. The rows of C are scaled accordingly, so
that the product of B and C and source apportion-
ment results stay unchanged.

3. The PM modeling problem and the formation of

the input matrix

In this section, we first describe the problem that
we encountered in CRPAQS PM modeling, and
then illustrate the procedures taken to form input
matrix for the NMFROC method.

3.1. The PM modeling problem

PM episodes were frequent in the winter until
recent years in the Central Valley, which covers
metropolitan Fresno and Bakersfield and surround-
ing rural areas (Fig. 1). A 2-week PM episode was
captured in the Central Valley during 25 December
2000 throughout 7 January 2001 (Magliano and
McDade, 2005). To simulate this episode, we
configured the CMAQ with the horizontal domain
that covers central and northern California and
adjacent areas, shown in Fig. 1. The model contains
(185� 185) (4 km� 4 km) horizontal grids and 15
vertically expanding, terrain-following sigma-P
layers, with the bottom layer thickness of �30m
and the top layer reaching 10 000 Pa. The meteor-
ological inputs were generated from NCAR/PSU
Mesoscale Meteorological Model (version 5), with
three one-way nested grids. In the two parent grids,
analysis-nudging was applied, but no FDDA was
applied in the third grid used in this study. Emission
inputs were speciated and gridded from regulatory
emission inventory maintained at California Air
Resources Board (CARB) for a larger modeling
effort, the CRPAQS PM modeling study, conducted
by scientists from multi-agencies. Several dozens of
simulations were conducted at CARB to find out
the scientific causes for the PM episode (Liang et al.,
2006a,b). In earlier simulations, abnormally high,
unrealistic concentrations of fine PM sulfate
were produced in the Central Valley, as shown in
Fig. 2(a).

3.2. Formation of the input matrix

To diagnose the error(s) in the model parameters
and/or processes responsible for the above problem
and to corroborate model sciences, we employed the
APCA and NMFROC methods described in the last
section. The procedures for conducting APCA
analysis can be found in a number of literatures
(Thurston and Spengler, 1985; Cao et al., 2005). We
focus here on the steps taken to conduct NMFROC
analysis for grid-based PM models.

For both MF methods, the input data matrix
consists of hourly quantities of emissions, simulated
concentrations of trace gases and fine PM compo-
nents, and important meteorological parameters at
three anchor stations of the CRPAQS during 25
December 2000 throughout 7 January 2001. The
deposition parameters used in the PM model were
excluded from the input matrix for the NMFROC
method, since they were not expected to have
significant impacts on the PM sulfate anomaly.
The emissions in adjacent grids may play important
roles in concentrations at the anchor sites, but we
decided to use the emissions in corresponding
grids as surrogates for all emissions to keep the
input matrix at manageable size for this study.
The resulting input matrix contained 76 variables
(Table 1) and 1008 (24� 14� 3) hourly samples,
which led to the total number of elements to be
76608.

For the APCA method, the input matrix was
normalized to have the standard (0,1) distribution
for all variables. For the NMFROC method, several
steps were taken to convert a raw species from
CMAQ inputs and outputs to a variable in the
input matrix (A). First, each species was subtracted
with its minimum value. This step enabled the
inclusion of meteorological variables, such as wind
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Fig. 1. Horizontal model domain. Fresno and Bakersfield are the two major cities in the Central Valley.

J. Liang et al. / Atmospheric Environment 40 (2006) 5759–57675762
components and the inverse of the Monin–Obukov
length (MOLI) that can be negative. Second, each
species was then divided by its mean quantity. This
step removed the units of species, thus allows for the
association among transformed variables. We un-
derstand that standard deviation can also be used to
substitute the mean in the second step, but it will not
change apportionment results. The above two steps
preserved the monotonic relationship between the
original variables and the corresponding variables
in the input matrix, a desirable feature for
interpretation of the NMFROC results. We under-
stand that the ranges, not the signs, of winds and
MOLI were preserved in these steps. If necessary,
the absolute quantities of these variables can be
recovered in the similar manner as APCA. Since the
minimum PM sulfate was much smaller than
the maximum in this study, it can be proved that
the above steps have negligible impact on appor-
tionment results for PM sulfate.

4. Results and discussions

4.1. The APCA results

We conducted PCA analysis on the input data
matrix, using the standard normalization and
singular value decomposition techniques written in
a statistical language (R Development Core Team,
2005). Nine principal components (PC) with eigen-
values larger than 1 were retained, and subjected to
varimax rotation. The coefficients of the nine PCs,
together with their eigenvalues and correlation
coefficients with variables, or called loadings, in
the input matrix, are listed in Table 2. We briefly
summarize the features of the nine PCs here.
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Factors 1–2 indicate clustering of emissions and
primary species. Factor 3 reflects that high ozone
was related to rural air with high PAN, NH3, dust,
and low primary anthropogenic PM emissions.
Factor 4 reflects secondary production of organic
Fig. 2. Sulfate in the fine PM mode simulated with MM5 rains/

clouds (a, upper panel), and without rains but with PM liquid

water content within 0.1 gm�3 (b, lower panel), at 11 am, 31

December 2000.

Table 1

Variables used in input matrix

Concentration: gas O3, NO, NO2, PAN, CO, HNO3, SO

ARO2, OLE1, OLE2, ETHENE, TR

Concentration: PM2.5 AH2O, ANH4, ANO3, ASO4, AEC,

Emission: gas NO, NO2, HONO, SO2, SULF, HCH

TRP1, MTBE, ETOH, ALK1, ALK2

Emission: PM2.5 PMFINE, PEC, POA, PNO3, PSO4,

Meteorological parameters PBL, MOLI, RGRND, CFRAC, W

Note: Variable names followed CMAQ nomenclatures, except for Dp an

volume diameter, and s the geometric standard deviation.
PM and nitrate was associated with high tempera-
ture and H2O2. Factor 5 reflects that PM sulfate was
associated with PM water content, as well as
ammonium, cloud fraction, low temperature and
H2O2. Factor 6 reflects that ozone and HNO3 were
high in unstable conditions (low MOLI) when PBL
and ground radiation were high. Factor 7 associates
ALK1 and crustal PM in the air with emissions.
Factor 8 associates cloud fraction and rain-water
with northwestern winds. Factor 9 reflects that high
H2O2 was associated with northern, downward
flows. The above factors are consistent with our
understanding of the science related to ozone and
PM in the model. If PC loading alone is considered,
then Factor 5 suggests that PM sulfate was highly
associated with PM water only. Note that PCA
tends to extract average information from samples,
and the varimax rotation tends to push the results
towards extreme rays, the direction of the
NMFROC method (Thurston et al., 2005; Liang
and Fairley, 2006).

We calculated the absolute PC scores following
Thurston and Spengler (1985), and fitted hourly PM
sulfate with the scores at the three anchor sites
during the winter PM episode with and without the
intercept, using an ordinary regression scheme (lm)
implemented in R. The regressed formula, in
combination with the PC scores, was used to
calculate contributions from nine factors to the
observed PM sulfate in Bakersfield at the time
shown in Fig. 2a. The results were listed in the last
column of Table 5. It is shown that calculations
using the APCA method produced large, negative
values for contributions from individual compo-
nents, though the larger to smaller (L/S) ratio (Liang
and Fairley, 2006) was 1.29. The exclusion of the
intercept in the regression analysis using the APCA
method, not shown here, resulted in larger L/S
ratio but did not eliminate large, negative terms.
The apportionment results could be improved by
2, HCHO, HO2H, ALK1, ALK2, ALK3, ALK4, ALK5, ARO1,

P1, NH3

AORGPA, A25, AORGA, AORGB, NUMACC, SRFACC

O, CCHO, RCHO, ACET, MEK, CH4, ETHENE, ISOPRENE,

, ALK3, ALK4, ALK5, ARO1, ARO2, OLE1, OLE2, CO, NH3

Dp, s
WIND, TA, QR, QC, UWIND, VWIND

d s that were added for CRPAQS study. Dp is the geometric mean
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Table 2

Key coefficients and loadings from APCA with varimax rotation

Factor Eigenvalue Variables with large PC coefficients and high loadings

1 35.0 Emis: NO (0.22, 0.95), NO2(0.22, 0.95), HONO (0.22, 0.95), SO2(0.72), SULF(0.72), HCHO(0.21, 0.98),

CCHO(0.18, 0.97), RCHO(0.85), ACET(0.76), MEK(0.91), C2H4(0.24, 0.99), ISOP(0.86), TRP1(0.78),

MTBE(0.22, 0.95), ALK2(0.20, 0.97), ALK3(0.92), ALK4(0.20, 0.96), ALK5(0.92), ARO1(0.21, 0.98),

ARO2(0.22, 0.98), OLE1(0.23, 0.98), OLE2(0.24, 0.96), CO(0.22, 0.96), PEC(0.21, 0.94), POA(0.79)

2 13.1 Chem: NO(0.28, 0.87), NO2(0.20, 0.89), CO(0.24, 0.97), SO2(0.22, 0.89), HCHO(0.27, 0.89), ALK1(0.74),

ALK2(0.24, 0.97), ALK3(0.22, 0.96), ALK4(0.23, 0.98), ALK5(0.21, 0.95), ARO1(0.25, 0.98),

ARO2(0.24, 0.97), OLE1(0.24, 0.97), OLE2(0.26, 0.96), C2H4(0.24, 0.97), TRP1(0.88), EC(0.25, 0.98),

AORGPA(0.18, 0.91), A25(0.81), NUMACC(0.76), SRFACC(0.86)

3 5.42 Chem: O3 (0.20), PAN(0.19), NH3(0.28)

Emis: NH3(0.42, 0.90), PNO3(�0.36, �0.95), PSO4(�0.27, �0.88), Dm(0.31, 0.87), s(0.28, 0.71)
4 3.38 Chem: H2O2 (0.26), ANH4(0.29), ANO3(0.44, 0.74), AORGA(0.42, 0.86), AORGB(0.43, 0.74)

Met.: TA(0.29)

5 3.23 Chem: H2O2(�0.21), ANH4(0.44, �0.75), AH2O(0.45, 0.85), ASO4(0.52, 0.88)

Met: QC(0.31), TA(�0.24)

6 2.31 Chem: O3(0.31), HNO3(0.23), NH3(�0.24)

Emis: s(0.24)
Met.: PBL(0.41, 0.79), MOLI(�0.39, �0.82), RGRND(0.46, 0.89)

7 1.85 Chem: CO(0.76), ALK1(0.25, 0.76), ALK4(0.75), ALK5(0.75), ARO1(0.73), ARO2(0.76), OLE1(0.74),

OLE2(0.71), C2H4(0.73), A25(0.17), NUMACC(0.19, 0.87), SRFACC(0.75)

Emis: SO2(0.83), SULF(0.83), CCHO(0.76), RCHO(0.20, 0.93), ACET(0.25, 0.95), CH4(0.29, 0.96),

TRP1(0.23, 0.92), MTBE(0.76), ETOH(0.28, 0.94), ALK1(0.30, 0.93), ALK2(0.70), ALK3(0.76),

ALK4(0.80), ARO2(0.70), OLE1(0.72), OLE2(0.72), CO(0.76), PMFINE(0.25, 0.94), POA(0.21, 0.92)

8 1.43 Chem: AH2O(�0.20)

Met.: CFRAC(�0.62, �0.83), QR(�0.26), QC(�0.33, 0.61), UWIND(0.40), VWIND(�0.29)

9 1.32 Chem: H2O2(0.22)

Met.: WWIND(�0.74, �0.87), VWIND(�0.57, �0.72)

Note: jCoef:jX1:5
ffiffiffi
v
p

are shown, and v ¼ 76 in this study. 88% of variance was explained by the first nine factors listed here. Correlation

(R) between variables and PCs is listed in bold numbers when RX0:7.
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applying a non-negative fitting to the APCA scores,
similar to the ROC method (Liang and Fairley,
2006), but further work is beyond the scope of this
paper.

4.2. The NMFROC results

We ran the NMFROC model to obtain nine
extreme rays that roughly enclose the ensemble of
samples. Runs with fewer extreme rays were also
conducted. However, runs with more extreme rays
were not conducted due to the constraints of the
ROC method and considerations of the prediction
error that are already low. Below we illustrate the
steps taken to interpret the results.

Table 3 lists the variables with coefficients larger
than 2 in the nine extreme rays (columns of B),
together with factor loadings X0.7. Variables with
values between 1 and 2 in B were listed in brackets
only when the number of variables with larger
values was too few. The larger the value of a
variable is in an extreme ray, the closer the distance
between the corresponding variable and the extreme
ray (factor). It is shown that some factors corre-
spond to unique processes, such as rain (factor 1),
fog (factor 3), anthropogenic (diesel) emissions
(factor 2), and chemical concentrations (factor 4).
Other factors combine several processes. For
example, factor 7 features MTBE and OLE2 as
well as other anthropogenic and isoprene emissions.
Factor 5 represents conditions with relatively strong
solar insolation, deep PBL height, large biogenic
emissions, and large concentrations of nitric acid
and ozone as well as hydrogen peroxide. Factor 6
associates high concentration of sulfate in fine
PM with very high aerosol water content, and
with terpene and organic PM to a much lesser
degree. Factor 8 indicates that high cloud fraction is
associated with elevated PBL and surface con-
centrations of ozone and PAN. Factor 9 associates
high ozone with a stable, rural condition with
large emissions of ammonia and coarser portion
of fine PM as well as a number of other
variables.
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Table 3

Key coefficients and loadings from the NMFROC method

Factor Variables with high values in matrix B

1 QR(65.4, 1.0) [CFRAC(1.6), PBL(1.5)]

2 Emis: NO(0.81), NO2(0.81), HONO(0.81), NH3(�0.89), PNO3(3.8, 0.93),PSO4(2.8, 0.73), PEC(2.4), ALK2(2.3),

ALK3(2.0), ALK5 (2.2), HCHO(2.8), NOx(3.4)

3 QC(42.7, 1.0), CFRAC(7.7), AH2O(12.3, 0.73)

4 Chem: VOC(2.3�3.7), NO(3.3, 0.83), NO2(2.0, 0.83), CO(2.8, 0.91), SO2(3.4, 0.90), HCHO(2.3, 0.80), ALK1(0.78),

ALK2(0.94), ALK3(0.94), ALK4(0.95), ALK5(0.87), ARO1(0.91), ARO2(0.90), OLE1(0.92), OLE2(0.91), C2H4(0.91),

AEC(2.4, 0.92), AORGPA(3.2, 0.94), A25(2.1, 0.86), SRFACC(0.80)

5 Met: RGRND(12.2, 0.83), PBL(9.9, 0.72)

Emis: ISOPRENE(5.7, 0.63), ALK5(2.0), (s(1.7), PEC(1.7))
Chem: HNO3(16.2, 0.88), O3(4.7), [HO2H(1.7)]

6 Chem: SRFACC(2.7), AORGB(2.3), AORGPA(2.0), AH2O(21.8, 0.92), ASO4(15.3, 0.85), TRP1(2.0)

7 Emis: SO2(2.1, 0.85), SULF(2.1, 0.85), CCHO(0.89), RCHO(0.93), ACET(2.0, 0.92), MEK(0.79), CH4(2.0, 0.87),

ETHENE(2.2, 0.88), ISOPRENE(2.0, 0.74), TRP1(0.81), MTBE(2.4, 0.91), ETOH(2.2, 0.92), ALK1(2.3, 0.87),

ALK2(0.75), ALK3(0.75), ALK4(2.1, 0.90), ARO1(2.0, 0.82), ARO2(2.1, 0.86), OLE1(2.3, 0.90), OLE2(2.4, 0.91), CO(2.3,

0.91), PMFINE(2.1, 0.94), POA(0.81)

8 Chem: O3(3.9), PAN(2.4); PBL(5.0), CFRAC(41.5, 0.93)

9 Chem: O3(6.5), PAN(4.1), HO2H(3.2), NH3(5.8), ANH4(3.1), ANO3(3.9), AORGA(2.4), AORGB(2.8), NUMACC(�0.81)

Emis: NO(�0.77), NO2(�0.77), HONO(�0.77), HCHO(�0.80), CCHO(�0.76), RCHO(�0.74), MEK(�0.71),

TRP1(�0.86), ALK2(�0.83), ALK3(�0.87), ALK4(�0.74), ALK5(�0.71),ARO1(�0.72), NH3(5.3), POA(�0.86),

PNO3(�0.74), PSO4(�0.84), Dp(7.9, 0.92), s(4.5)
Met: MOLI(3.62), WWIND(3.2), TA(2.9), UWIND(3.1), VWIND(3.1)

Note: Variable names follow Table 1. Variables were listed when their values in B (in parenthesis) are larger than 2, while 1 is the average

value. A few variables with values smaller than but close to 2 were listed in brackets. Correlation (R) between variables and factors is listed

in bold numbers when RX0:7.

Table 4

Correlations between factors resolved from the NMFROC and APCA methods

NMF no. 1 2 3 4 5 6 7 8 9

PC no. 8 3 5, 8 2 6 5 1, 7 8 3, 7

R 0.39 �0.85 �0.64, 0.61 0.95 0.84 �0.90 0.82,�0.86 0.68 0.85, 0.73
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Table 4 lists the correlations between factors
identified by the NMFROC and APCA methods. It
is shown that these two methods identified some
common factors, but significant differences existed
in other factors, presumably owing to the difference
in methodology (Liang and Fairley, 2006).

Fig. 3 shows the PM sulfate with concentrations
larger than 1 mgm�3 in the input (black circles) and
prediction matrices (blue lines), and the factors that
contributed more than 20% to the PM sulfate with
concentrations larger than 4 mgm�3, a typical
observed value during the PM episode captured in
San Joaquin Valley (Liang et al., 2006b). It is shown
that factor 6 was dominant in all the above cases,
with minor contributions from factor 7. Thus, the
PM liquid water content appeared to be the major
factor for the PM sulfate anomaly.
For the fine PM sulfate shown in Fig. 2(a),
Table 5 lists the corresponding column of C and
row of B, together with products of the two, scaled
to 100. The third-to-last column of Table 5 mimics
the percentage contributions from factors to sulfate
in this sample, with the prediction to observation
ratio of 1.28. We refrain here from drawing too
much attention to accurate accounting of individual
variables. Instead, we intend to qualitatively define
the processes that are responsible for the peak
sulfate. From the discussion on the features of
factors above, peak sulfate in Fig. 2(a) was mainly
due to a factor with high aerosol water content, with
small influences from factors featuring biogenic and
anthropogenic emissions.

To verify the information offered by the
NMFROC analysis, we show in Fig. 2(b) the fine
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Fig. 3. PM sulfate in the input and prediction matrices and

major contributing factors in samples with PM sulfate larger than

4mgm�3.

Table 5

Apportionment of PM sulfate in a sample from NMFROC and

APCA

NMFROC APCA

Factor C

[‘‘peak’’]

B

[‘‘ASO4’’]

B�C

(%)

Factor Intercept

402

1 0.0 0.1 0.0 PC1 16

2 0.5 0.4 6.4 PC2 7.2

3 0.0 0.3 0.1 PC3 0.1

4 0.2 0.2 1.1 PC4 �30

5 0.1 0.0 0.0 PC5 �309

6 0.2 15.3 87.5 PC6 13

7 0.2 0.7 5.1 PC7 �3.6

8 0.1 0.0 0.0 PC8 �5.2

9 0.0 0.7 0.0 PC9 9.7
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PM sulfate in a simulation without rains and with
aerosol water content limited to be within 0.1 gm�3.
In addition, the catalytic pathways that produces
sulfate in aqueous phase but had no dependence on
other chemical reactions were turned off. The
resulting sulfate in the fine PM mode was reduced
by �10-fold, consistent with the results shown in
Fig. 3 and Table 5. Thus, the NMFROC diagnostic
results on the abnormal sulfate in fine PM mode
were verified.
5. Summary

Error diagnosis of fine-grid photochemical trans-
port models (CTM) has become a formidable task,
which requires thorough understanding of complex
microphysical and photochemical processes in the
atmosphere as well as scientific computing. In an
initial modeling exercise conducted for the Califor-
nia Regional PM10/PM2.5 Air Quality Study,
abnormally high, unrealistic, PM sulfate concentra-
tions were simulated in central California. To aid
the error diagnosis, two matrix factorization meth-
ods, namely APCA and an efficient NMFROC,
were used to analyze the relationships among the
input and output parameters of a CTM for PM
modeling and to apportion the relative importance
of individual factors to PM sulfate in an abnormal
sample. The APCA method corroborated sciences
implemented in the PM model, but failed to
apportion the relative importance of individual
factors to PM sulfate in an abnormal sample. On
the other hand, the NMFROC method performed
well on the apportionment of an abnormally high
PM sulfate, as well as identifying the problem in the
PM model. The factors produced from the
NMFROC method shared some common features
of, but showed significant difference from the
APCA method, which can be understood from
their difference in methodology. Subsequent PM
modeling results were shown to validate the results
from the NMFROC method.
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